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Design of Neural Networks Model for Transmission Angle
of a Modified Mechanism

Sahin Yildirnm*, Selguk Erkaya, Siikrii Su, ibrahim Uzmay
Erciyes University, Engineering Faculty,
Department of Mechanical Engineering Kayseri/ TURKEY

This paper discusses Neural Networks as predictor for analyzing of transmission angle of
slider-crank mechanism. There are different types of neural network algorithms obtained by
using chain rules. The neural network is a feedforward neural network. On the other hand, the
slider-crank mechanism is a modified mechanism by using an additional link between con-
necting rod and crank pin. Through extensive simulations, these neural network models are
shown to be effective for prediction and analyzing of a modified slider-crank mechanism’s

transmission angle.
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Nomenclature

TDC | Top dead center

BDC : Bottom dead center

“ . Transmission angle

Ye . Crank arm length

{ . Connecting rod length

¥p : Radius of pinion gear

e . Distance of eccentricity

7 . Crank rotation angle

@ . Weighted sum

g{.) ! Non-linear dynamic function

ydi ™ desired outputs

yi © ™ outputs of the network

@ [ Unknown parameters

w . Network weight

7 . Learning rate

a . Momentum constant

ar . Error signal of the 7" neuron in the m™®
layer

5! ! Bias input to neuron { in layer m—1.
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i . Number of neureons in the input layer
#; . Number of neurons in the hidden layer
e . Number of neurons in the output layer
N . Training numbers

RMSE . Root Mean Square Error
1. Introduction

There has been considerable interest in the past
few years in exploring the applications of artifi-
cial neural networks (ANNs) for analyzing and
prediction mechanisms. Also, modeling applica-
tions of neural networks received increasing at-
tention due to their versatility, such as non-linear
mapping, linear adaptability and parallel process-
ing. ‘

A neural network has been employed as a
case-based approach for analyzing dimensions
of a planar linkage (Vasiliu and Yannou, 2001},
In addition to neural network approach, various
classical method schemes have been studied to
achieve good tracking performance of the slider-
crank mechanism. Soylemez has analyzed slider-
crank mechanism using complex algebra method
{Soylemez, 2002), The complex algebra has em-
ployed to solve classical problem. The solution
was obtained as the root of cubic equation within
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a defined range. Shrinivas and Satish have pro-
posed importance of the transmissien angle for
most effective force transmission. In their paper,
4, 5.6 and 7 bar linkages of the mechanisms
were investigated (Shrinivas und Satish, 2002).
Kim und Jung have investigated the theoretical
mechanism for driving the tapered pistons by
using of the geometric method (Kim and Jung,
2003). In their research, the driving area of the
tapered pistons was analyzed by measuring the
strain of a cylinder forced against a tapered piston
using an electric strain gauge and a slip ring. The
forces applied to tapercd pistens were also in-
vestigated with the change of discharge pressure
and the rotational speed. Attia has analyzed a
numerical algorithm fer kinematic analysis of
4 multi-link five-point suspension mechanism
{Autia, 2003). In his paper, geomelric constraints
for the system were introduced to fix the relative
positions between the points belonging to the
same rigid body. Position, velocity and accelerat-
ion analyses were carried out and the presented
results were discussed. Choi has also investigat-
ed kinematic analysis and optimal design of a

3-PPR planar parallel manipulator, which consist-

ed of three active prismatic joints. three passive
prismatic joints, and three passive rotational
joints (Chot, 2003}, In his research, for the kine-
matic analysis, direct and inverse kinematics, and
inverse Jacobian of the manipulator were derived.
Also, for the optimal design of the manipulator,
an optimal design procedure was carried out
using Min-Max theory. Lee et al. have inves-
tigared a constraint operator for the kinematic
calibration of a parallel mechanism (Lee et al.,
2003). They constrained the movement between
two poses by adopling the concept of a constraint
operator. Also, a cost function was derived by the
errors between the theoretical movement and the
actual movement. Finally, the parameters that
minimize the cost function were cstimated and
substituted into the kinematic model for a kine-
matic calibration.

The paper is organized in the following man-
ner, Section 2 describes the theery of transmission
angle of the modified shider-crank mechanism.
Some details of the neural networks and learning
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algorithms are outlined in section 3. Simulation
results are given in section 4 and the paper is
concluded within section 5.

2. Modified Slider-crank Mechanism

Modified slider-crank mechanism, as shown
in Fig. I, has an additional extra link beiween

> Rototion center of the crank shafi
. Crank-pin center

. Piston-pin center

. Crank shaft bearing

- Crank arm

© Eccentric conneclor

. Connecting rod

. Piston

6-7-8-9 © Elemenis of the epicyclic gear mechanism
1% transmission line | 4-3-2
transmission line | 4-3-6-7-8-9-2

Fig. 1 Schemulic representation of the modified
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connecting rod and crank pin as digtinet from
well-known slider-crank mechanism. The new
extra link may be cdlled eccentric gonnector and
transmits gas forees to the crank and alse drives

a planetary gear mechanism. In order to drive

planétary gear trdin, a pinion fixed to the eccen~
tric. connector in a parallel plane is used. Se,
thére are two transmission lines in this new sys-
tem. One of them called direct transmission line
consists of ¢onhecting rod-eccentric connector-
crank arm and the other called indirect trans-
mission line eonsists of eonnecting rod-eccentric
connector-gear mechaiism.

When the motion characteristic of the mecha-
nism in Fig. | is outlined carefully, a kinematic-
based scheme in Fig. 2 is obtained.

Referring te Fig. 2, it ¢an be séen that the
modified mechénism has one degree of freedom,
that is, this model is a sonstrained mechanism.
The eceentric conneétor has a curvilinear transla-
tion because of the partieular choice of gear ratio

Fig. 2 Working scheme of the modified mechanism
on XY plane
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Table 1 Kinematic parameters of the modified

mechanism
Parameters Values (mm)
2 50
{ 269
#p 56
& 3565

between pinion and ring gedr. 8o, it has no a
relative metion with respect to crank pin. The
kinematic parameters and values of the modified
mechanism are given in Table 1,

2.1 Transmission angle of meéchanism

The transmission angle (g is an important
criterfon for design of the mechanisms, which
dendtes the quality of motion transmission in a
mechanism. It helps to. decide the “Best” among
& family of possible mechanisms for most effec-
tive force transmissien {Shrimivas and Satish,
2002). Usually, transmission angle is used to ob-
tain better results for various linkage applica-
tions. THe mechanistn designed with cosine of
maximum transmission angle criterion will have
minimum force acting along the coupler and on
the bearings. Although a good trapsmission angle
is not a cure-all for every design problem, for
many mechanicdl applications it can guarantee
for the performance of linkage at higher speed
without unfavorable vibrations. When p=9%0"
most effective force transmission. takes place and
the accbracy of output motion is less sensitive
to: manufacturing tolerances of link lengths and
clearance between jeints and change of dimen-
sions due to thermal expansion. Mechanisms hav-
ing transmission angle too much deviated from
90°, exhibit poor operational characteristics like
noise and jerk at high speeds. If g=0°, self-lock-
img takes place. Transmission angel in a mech-
anism provides & very good of the quality of
motion, expected noise output and its costs in
general. In other words, it is a simple and useful
cogfficient of performance in mechanisms for
non-uniform motion transmission.

The transmission angle does nat consider the
dynamic forces due to velocity and acceleration.
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Fig. 3 The transmission angle variations of the
odified system

Because of this reason, it is widely used in kine-
matie synthesis stage during which the lengths
and mass properties of the links are unknewn.
Kinematically expressed transmission angle does
not reflect the.acétion of grivity or dymamic forces.
8o, for the determination of transmission char-
acteristics of the linkags, it 1% not necessary to
analyze the forces and torgue acting at each joint
of the whole mechanism. Referring to Fig. 2, the
transmission -angle equation for the medified
mechanism can be described as;

1 cos y=resin f+r—e (D

a—cos™ ( v 5in é[+ﬁ, —g ) )

From Egq. {2), the fransmission angle depends
en mainly two variables: eccentricity value and
crank rotation angle, that is, u=7F {8 ei). The
othier parameters ; ¥z, #p atd [are constant terms,
The relationship between eccentricity value and
transmission angle during one cycle i$ outlined in
Fig, 3.

3. Feedforward Neural Network

The architecture of the neural network is
shown in Figure 4. The structure is the samie 454
feed—forward ANN except for the learning algo-
rithms. As it ¢an be seen from Figure 4, neural
network cohsists of three layers, which are input,
hidden and output layers. The input layer with
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ny * Number of neurons in the input layer (i=1}
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n

Fig. 4 A Feedforward NN for kintematic analysis of
modified mechanisin

one neuron, the hidden layer with [0 neurons
aid the gutput layer with 37 neurons are em-
ployed as a predictor of the mechanism.

The network architecture is defined by the
bagic processing elements and the way in which
they are interconnected.

The basic processing elemiént of the comnec-
tionist architecture is offen called a neuron by
analogy with neurephysiology. Many of the basic
processing slements may be considered to have
three compuonents ;

(1) A weighted sumer

(2} A linear dynamic single input single output
($180)

(3) A non-linesr dynamic function

These slements are considered in turn in the
following section. The weighted sumer is describ-
ed by

oult) = Fawn(t) = S+ ()

giviig & weighted sum §; in terms of the out-
puts of all elements ., external inputs w4 and
corresponding weights gy and by together with
constants . N of these weighted sumer elements
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can be conveniently expressed in vector-matrix
notation.

Stacking N weighted sums ¢; into a column
vector ¢, the N outputs ¥, into a vector y and M
inputs 2 into a vector  and the N constants w;
into a vector w, equation (3) may be rewritten in
vector matrix form as:

() =Ay(t) +Bu(f) +w (4)

where the ;% element of the N XN matrix A
is and the element of the N XM matrix B is
ba. The constants w; could be incorporated with
the inputs z,, but it is useful to represent them
explicitly.

The linear dynamic SISO system has input ¢
and output x,; In transfer function form, it is
described by

JC;'(S)=H(S) 501'(3) (5)

In the time domain ; above equation becomes :
t r
x.-(t)=f_wh(t—t’) () df (6)

where H(s) and A(#) form are a Laplace trans-
form pair.

The non-linear dynamic function g(.) gives
the element output y; in terms of the transfer
function output x;:

vi=glxi) 7

3.1 Learning algorithms

The learning algorithm topology, which was
employed for the neural network updating the
weight can be described as follows; define the
error function as (Canbulut et al., 2004)

T=3B a0 -y (®)

where ydi(#) are the /' desired outputs and
yi(#) are the {™ outputs of the network. This
error function is to be minimized with respect
to all the unknown parameters @. In the steepest
descent approach the parameter vector @=[4,
&, =+, 8.7 is adjusted using the increment vec-
tor [AB, AB, -+, AB.]" defined along the nega-
tive gradient direction of J

A=—1-2%- (9)
Although the one-hidden layer model is used in
the present application, it is useful to derive the
gradient of J for the general case, and the result
for the one-hidden-layer model can readily be
obtained as a special case.

Starting from the output layer s of the network
and setting #;= W, the application of the chain
rule gives rise to

of _ ] oy
AWn  éyv: WD 1o
From equation (8)
%:_(J}di‘yi)=_3'm {n

where 87 is called the error signal of the ™
neuron in the #' layer. From Equation (10}

3y m-1
owr % (12)
Thus,
of __sm.m
WE &7 x] {13)

Next consider the (#m—1)™ layer. Using the chain
rule yields :

Then
92: =g’ (2" (15)
and
o (16)
gz = a‘%f) (17)

and g{z) is the activation of neuron ¢
By defining the error signal for the i neuron
of the (m—1)*" layer as:

o
6,’-”“=g’(z§"“)§62‘ Wi (18)
Equation (8) can be rewritten as:
af 1ome
aWi,J,_,_1=—5? i (19)
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Similarly it can be shown that

agg—ﬁ—é‘?‘l (20)

where &7 is the bias input to neuron 7 in layer
m— 1.

By carrying on this procedure, Equations {18) -
{20} can be used as 4 general algerithm for up-
dating weights in other layers.

Equations (18)-{20) indieate how the error
signals propagate backwards from the output la-
yer of the network through the hidden laver to the
ittput tayer, hence the name “BP”. The steepest—
descent minimization of theerror function defined
in Bquation (8) produces the following incre-
menty for updating 8 :

AWE (£) 9T (8) &7 (2) (21)
AGT(8)=7587(8) (22)
where in the output layer
B (1) =yu(t) —3:(8) (23)
and in other layers

8P (t)=g' (2" t)')g?.&?"”(t) Wt —1y (24)

Thé constants 7y (0<3,<1) and 7 (0<ps<1)
represent the learning rates for the weights and
biases respectively: [n practice, a large value of
the learning rate would be preferable, becduge this
would result in rapid learning. Unfortunately, a
large value of the learning rate ¢an -also lead to
os¢illation or even divergence. To help speed up
learning but gvoid undue ascillations, & momen-
tum term is usually included so that Equations
(21) and (22) become

AWG =000 () P78 +axAWE (1 —1) {25)
ABF(E) =8P () FanABT (1) (26)

where @y and a, are momentum constants, which
determine the effect of past changes of W (#)
and ABP{#) on the current updating direction in
the weight and the bias space respectively. This
effectively filters out high frequency variations
in the error surface. T'o summarize, the BP algo-
rithm updates the weights and thrésholds of the
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networks according to

W2t =Wg(t—1) +AWR (1) (27)
and
bR =07t —1) +ALF (2} (28)

where the increments AWE {#) and AbF(L) are
given in equations in {25) and (26).

The neural network was trained and tested by
using five types-of learning algorithms: The algo-
rithms can be described in the following forms.

3.1.1 QOnline-backpropagation zigorithm
(Case 1)

Online Backpropagation which updates the
weights after each pattern is preésented to thée net-
work. Back-propagation is the most commonly
used training algorithm for neural netwerks. The
weights are updated as follows

Taramatson avge Tegoe]

Fig. 5(a) The sctual transmission angle variations

using online BP learning algorithm

bk Degee]

= a s T o e L ee|

¥ig. 3{b) The RMSEs using online BP learning
algorithm
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+alwg (=17 (29)
where 7 is the learning rate, and o is the tho-
mentum constant. The actual results for “Otiline
Backpropagation Learning Algorithmn™ ¢an be
outlined in Fig. 5(a}.

From Fig, 3 and Fig 5(a), the deviations. be-
tween desired and actual results (RMS Error)
using Online BP Learning Algorithm is shown
in Fig. 5(b).

3.1.2 Batch backpropagation algerithm
{Case 2)

Batch Backpropagation with weight updates
oceurring after each epoch. The actual results for
“Batch Backpropagation Learning Algorithm”
can be outlined in Fig. 6{a).
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Fig. 6(a} The actual transmission angle variations

using batch BP learning algorithm
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Fig. 6{b) The RMSEs using batch BP learning
algofithm

From Fig, 3 and Fig. 6{a}, the deviations be-
tween desired and actual results using Batch BP
Learning Algorithm is shown in Fig. 6(b).

3.1.3 Delta-Bar-Delta algorithm (Case 3)

Delta-Bar-Delta is an adaptive learning rate
method in which every weight has its own learn-
ing rate. The learning rates are updated based on
the sign of the gradient. If the gradient does not
change signs on successive {terations then the step
sizé is increaseqd linearly. If the gradient changes
signs, the learning rate is decreased exponentially.
I some cases this methed seems to learn much
faster than not-adaptive metheds. Learning rates
7{#) are updated as follows:

K i §(—18(t >0

Ap()=1 —gglt) if F—1) &) <0 (30)
0 else

TamMma10n sge Cegwe|

Fig. 7{a)} The actual transmission -angle variations
using delta-bar-delta learning algorithm
Case 3
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Fig. 7(b) The RMSEs using delta-bar—delta learn-
ing algorithm



1882

where §(¢ )—%}i at time ¢ amd § is the expo-

nential average of past values of §.
§H)=01—-8)8(t) +68(t—1) (31)

The actual results for “Delta-Bar-Delta Learning
Algorithm” can be outlined in Fig, 7{a).

From Fig 3 and Fig. 7(a), the deviations be-
tween desired and actual results using Delta-
Bar-Delta Learning Algorithm is shown in Fig. 7
(b)

314 Random backpropagation algorithm
(Case 4)

Randem Backpropagation Algorithm stands
for “resilient propagition”. This is an adaptive
learping rate method where weight updates are
based only on the sign of the Iocal gradients, wot
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Fig. 8(a) The actual fransmission angle variationg
using randem BP learning algorithm
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Fig. 8(b) The RMSEs using random BP learning
algorithm
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their magnitudes. Each weight, w4, has its own
step size or update value, Ay; which varies with
time # according to:

0 >0
1) .@( n<o 32

i

Aslt—1), 1faE(t )aE(a

7 Aglt—1), zf‘l’%

Aglr—1), el

where 0<g~ <1< "

Aﬁ(t}=

The weights are updated

according te

—Au (8], i (t) >0

Agle), it — {8 <0
A0 xfwﬂc}

Awis(8) = (33)

0 else

The actual results for “Random Backpropagation
Learning Algorithm” ¢an be outlined in Fig. 8
{a).

From Fig. 3 and Fig. 8{a), the deviations
between desired and actual results using Random
BP Learning Algerithm is shown in Fig. 8(b).

3.1.5 Quick propagation ajgorithm (Case 5)
Quick Propagation Algoritht is a training
method based en the following assumptions

(1) E(w) for each weight can be approximat-
ed by & parabola that opens upward

{2) The change in slope of F(w) for this
weight is not affected by all other weights that
change at the same time.

The weight update rule is:

s N
Aw(t)—'—s(r_u_sm Awlt—1)—45(4) (34)
where ${£) = gE (#}. The numerater is the deri-

vative of the errer with respect to thie weight
and [S{t—1)—8(£) J/Aw(t—1) is a finite dif-
ference approximation of the second derivative,
Together these approximate Newton's method
for minimizing a one-dimensional function f(x):

Ax=—F (x}/F” (x}. To avoid taking an infinite
backward step, or a backward uphill step, a maxi-
mum growth facter parameter ¥ is introduced.
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No weight change is allowed to be larger than
times thé previous weight change, The actual
results for “Quick Propagation Learning Algo-
rithm” can be outlined in Fig. 9{a].

From Fig. 3 and Fig. 9{a), the deviations be-
tween desired and actual results using Quick Pro-
pagatidn Learning Algorithm is shown in Fig. 9
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Fig. 9{a) The actual transmission angle variations

using quick prepagatien learning alge-
rithm
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Fig. 9{b) The RMSEs using quick propagation
learning £lgorithm
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4, Simulation Results and Discussion

The results obtained using NNs for a modified
slider-crank mechanism have been described in
this section, The general structure of the neural
predictor is shown in Figure 4. Training of the
neural network procésds as follows. Firstly, néur-
al network was trained by using CASE 1 algo-
rithm fér 1600000 iteration numbers. The neural
network was trained by using all cases as describ-
ed in seetion 3.1. The structural and training
algorithm of the neural network is outlitied in
Table 2.

To verify the effectivéness of neural npetwork,
simulation results of modeling of a slider-crank
tnechanism are shown in Figure 5(d) ~9(b) for
all cases. Figure S5{s) represents variations of
transmission angle when eccentricity and crank
rotafion angles changed. The RMSE resulls are
given in Figure 5(b) for Case 1. Figure 6(a) and
Figure 6{b) show the transmission angle track-
ing for Case 2 when eccentricity and erank rota-
tion angles of meéchanism changed. The results
of trangmission angle of modified slider-crank
mechanism for Case 3 are plotted in Figure 7(a).
RMSEs variation for this case is given in Figure
7(b). Figure 8(a) shows the output of the neural
tistwork predictor for case of 4. The results of
this cage are rather worse than the cases of 1, 2, 3
and 5. RMSEs for the case of 4 are depicted in
Figure &{b). Figure 9{a) .indicates the results of
Case 5. As can be depicted from figure, the case
of Quick Propagation learhing algorithm gives
the best results of all cases. RMSEs for the case of
5 are given in Figure 9(b).

Meost of neural network models used for pre-
diction and modeling are feed—forward networks.

Table 2 Training parimeters and RMSE of the network for the different. learning algofithins

NN type s 7y iy 7 a N EMSE Learning. Algorithm
Case 1 1 10 37 0.05 0.001 | 1000006 | Q01627 Online-Backpropagation
Case 2 I 18 37 0.05 0.091 1000006 | Q01565 Batch Backpropagation
Case 3 1 16 37 0.05 0081 | 1000000 | 0.01079 Delta-Bar-Delta
Case 4 1 10 am 0.65 000 | 1000000 | 0.24845 | Random Backpropagstion
Case § 1 4] 37 0.95 0.001 1000000 | 0.004388 Quick Propagation
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Since feed-forward nets can only represent me-
moryless transformations, one needs to explicitly
feed all the past inputs and outputs of the mech-

anisms.

5. Conclusions

The prediction of a proposed and modified
slider-crank mechanism has been discussed in
this paper. Neural networks have been employed
to find exact transmission angle parameters of
the slider-crank mechanism. The case of 5, Quick
Propagation neural network predictor has given
the best performance rather than the cases of |, 2,
3 and 4.

Based on the simulation results, it is observed
that the proposed NN is promising in the follow-
ing aspects. First, the QP learning algorithm is
very efficient. After the task is repeated only a few
times, the neural network is well trained so that
the desired tracking performance can be achieved.
Second, the network structure is simple which is
suitable for real time prediction purpose. Third,
in comparisen with the results obtained in all
cases, this prediction technique does not require
knowledge of the bounds of uncertainties of the
mechanism model. Thus, it can be implemented to
predict a more general class of dynamic system
whose model is unknown.
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