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Design of Neural Networks Model for Transmission Angle 
of a Modified Mechanism 

~ahin Yddlnm*, Selquk Erkaya, Siikrii Su, Ibrahim Uzmay 
Erciyes University, Engineering Faculty, 

Department o f  Mechanical Engineering Kayseri / TUR K E Y 

This paper discusses Neural  Networks as predictor for analyzing of transmission angle of  

sl ider-crank mechanism. There are different types of  neural network algorithms obtained by 

using chain rules. The neural network is a feedforward neural network. On the other hand, the 

slider-crank mechanism is a modified mechanism by using an addit ional link between con- 

necting rod and crank pin. Through extensive simulations, these neural network models are 

shown to be effective for prediction and analyzing of  a modified sl ider-crank mechanism's 

transmission angle. 
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Nomenclature  
TDC : Top dead center 

BDC : Bottom dead center 

tl : Transmission angle 

rc : Crank arm length 

l : Connecting rod length 

r~ : Radius of  pinion gear 

e : Distance of  eccentricity 

0 : Crank rotation angle 

q~i : Weighted sum 

q (.) : Non- l inear  dynamic function 

ydi : i th desired outputs 

y i  : t ~h outputs of  the network 

O : Unknown parameters 

w : Network weight 

r/ : Learning rate 

a : Momentum constant 
&" " Error signal of the i TM neuron in the rn th 

layer 

b~ -t  " Bias input to neuron i in layer m - - I .  
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ni : Number of  neurons in the input layer 

nj : Number of  neurons in the hidden layer 

n~ : Number of  neurons in the output layer 

N : Training numbers 

RMSE : Root Mean Square Error 

I. Introduction 

There has been considerable interest in the past 

few years in exploring the applications of  artifi- 

cial neural networks (ANNs) for analyzing and 

prediction mechanisms. Also, modeling applica- 

tions of  neural networks received increasing at- 

tention due to their versatility, such as non- l inear  

mapping, linear adaptabil i ty and parallel process- 

ing. 

A neural network has been employed as a 

case-based approach for analyzing dimensions 

of  a planar linkage (Vasiliu and Yannou, 2001). 

In addit ion to neural network approach, various 

classical method schemes have been studied to 

achieve good tracking performance of the sl ider-  

crank mechanism. Soylemez has analyzed sl ider-  

crank mechanism using complex algebra method 

(S5ytemez, 2002). The complex algebra has em- 

ployed to solve classical problem. The solution 

was obtained as the root of cubic equation within 
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a defined range. Shrin[vas and Satish have pro- 

posed importance of the transmission angle for 

most effective force transmission. In their paper, 

4, 5, 6 and 7 bar linkages of the mechanisms 
were investigated (SErinivas and Sa:ish, 2002). 

Kim and Jung have investigated the theoretical 

mechanism for driving the tapered pistons by 

using of che geometric method (Kirn and Jung, 

2003). In their research, the driving area of the 

tapered pistons was analyzed by measuring the 

strain of a cylinder forced against a tapered piston 

using an electric strain gauge and a slip ring. The 

forces applied to tapered pistons were also in- 

vestigated wfih the change of discharge pressure 

and the rotational speed. Atria has analyzed a 

numerical algorithm for kinematic analysis of 

a multi-I ink five-point suspension mechanism 

(Atria, 2003). In his paper, geometric constraints 

for the system were introduced to fix the relative 

positions between the points belonging to the 

same rigid body. Position, velocity and accelerat- 

ion analyses were carried out and the presented 

results were discussed. Choi has also investigat- 

ed kinematic analysLs and optimal desig~ of a 

3-PPR planar parallel manipulator, which consist- 

ed of three active prismatic joints, three passive 

prismatic joints, and three passive rotational 

joints (Cho[, 2003), In his research, [or the kine- 

matic analysis, direct and inverse kinematics, and 

inverse Jacobian of the manipulator were derived. 

Also, for the optimal design of the manipulator, 

an optimal design procedure was carried out 

using Min-Max theory. Lee et al. have inves- 

tigated a constraint operator tbr the kinematic 

calibration of a parallel mechanism (Lee et al., 

2003). They constrained the movement between 

two poses by adopting the concept of a constraint 

operator. Also, a cost function was derived by the 

errors between the theoretical movemen~ and the 

actual movement. FinalIy, the parameters that 

minimize the cost function were estimated and 

substituted into the kinematic model for a kine- 

matic calibration. 

The paper is organized in the foLlowing man- 

her, Section 2 describes the theory of transmission 

angle of the modfl'ied slider crank mechanism. 

Some details of :he neural networks and learning 

algorithms are outlined in section 3. Simulation 

results are given in section 4 and the paper is 

concluded within section 5. 

2. Modified Sl ider-crank Mechani sm 

Modified slider--crank mechanism, as shown 

in Fig, 1, has an addit ional extra link between 

~ ~ 3 ..... ...-.6 

O ~ "  ~ l " " "  Jr'L". 

O Rototion cemer of the crank shaft 
A Crank-pill center 
C Piston pin center 
l Crank shaft bearing 
2 Crank arm 
3 Eccentric connector 
4 Connecting rod 
5 Piston 
6 7 8 9 : Elemcnt~ of the cpicyclic gear mechanism 
I s~ transmission line : 4-3-2 
2 nd transmission [me : 4-3-6-7-8-9-2 

Fig. 1 Schematic represent,'ttion of the modified 
slider crank mechvnism 
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connecting rod and crank pin as distinct from 
well-known slider-crank mechanism. The new 
extra link may be called eccentric Connector and 
transmits gas forces to the crank and also drives 
a plan.eta~ gear mechanism. In order to d r i ~  
planetary gear train, a pinion fixed to the eccen- 
tric conne~tor in a paraUei plane is used. So, 
there are two transmission lines in this new sys- 
tem, One of them eal!ed direct transmission line 
consists of  eontaecting rod-eccentric c0nnect.mr- 
crank arm and the other called indirect trans- 
mission line consists :of connecting rod-eccentric 
connector-gear mechanism. 

When the motion characteristic of the mecha- 
nism in Fig, i is outlined. carefully, a kinematic- 
based scheme in Fig. 2 is obtained. 

Referring to Fig. 2, i.t 6a:n .be ,m~n that the 
modified mechanism has. one degree ~f freedom, 
that is, this model is a ~onstrained .mechanism. 
The eccentric .conneetor has a eurvilincar transla- 
tion because of the particula~ :choice o.f gear ratio 
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Eig, 2 Working scheme of the modified mechanism 
on X¥ ptane 

Table I Kinemad¢ parameters: 0fthe modified 
m~hanism 

P.arametexs Values (ram) 

• re 50 

2~9 

r ~  5 O  

• e 35 ~ 65 

between pinion a.nd ring gear. St>, it has no. a 
relative motion with respect to crank pin. The 
kinematic parameters and values of the modified 
mechanism are given in Table 1. 

2.1 T r a n s m i s S i o n  a n g l e  of  m ~ e h a n i s m  

The transmission ~tngiv (t.t) is an important 
eriteri'on for design of the mechanisms, which 
denotes the quality of motion ~ansmission in a 
mechanism. It helps, to. decide the "BesC among 
a family o.f possible meckanisms for most Of fee- 
.tire force transmission ,(Shrinivas and Satish, 
2002). U~ually, traasmission angle iS used to ob- 
tain better results for vario~.s linkage app.lica: 

tions. The mechanism designed with cosine of 
:maximum transmission angle criterion will have 
minimum force acting along .the coupler and on 

the be.arings. Although agood transmjssian annie 
is not a cure-all for every design problem, for 
many mechanical applieati0ns it earn guarantee 
for the performance of linkage at higher speed 
without unfavorable vibrations. When /z=90 ~, 
most effe~eti.ve force transmission: takes piaee and 
the accuracy of output motion is less sensitive 
to manufacturing tol~.ances of link lengths and 
¢learance between joints and change of dimen- 
sions due to thermal expartsion~ Meeh~nisms hav- 
ing transmissi:on angle too much deviated from 
90 ~, ex.hiSit poor operational characteristics like 
noise and jerk. at high speed~. If ,u~0 °, self-tock- 
igg takes pl.aee; Transmission angel in a mech- 
anism provides a very good of the quality of 
mot io~ expected no~se output .and its. costs in 
general. In other words,, it is a simple, and u~eful 
coefficient of perle:finance in me, ehanisms for 
non-uniform mO~ion transmission. 

The transmission .angte does not consider the 
dyn.amie forces due to velocity and acceleration. 
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Ng. 3 The tr.ansmissi~n a.n#e varimi.ons of the 
modified system 

~ecaus:e of this reason, it is widely us~  i.n kine- 
matic ~synthesis .stage duri:ng which the lengths 
and mass properties ..of the tlnk~ are unknown. 
K~nematieally expregsed transmission angle .dnes 
not reflect theaeti0n of gravity or dynamic forees. 
80, for the determination of transmission char- 
acteristics of the linkage, it is not neCeSsary to 
analyze the forces and torque acting at each joint 
of the Whole meehanism. Referring to Fig. 2, the 
transmission -angle equation for the modified 
mechanism can be.. described as~; 

l ¢ ~  tz=r¢.sin O.+r~,- e (1) 

.,a=:c~s_~ ( r,..sin 8+.e~- e 
l ) (::~) 

From Eq. ~2~, th.o transmission .~ugi~ depends 
on mainly two variables : :eccentricity ~alu~: and 
crank rotation angle..that i~,/z=f.(~., e~. The 
other parameter~ ; re., r~ and ../.are. co.nstant terms. 
The relationship between eccentricity value, and 
transmission angle during one cycle is outlined .in 
Fig., 3. 

3 .  F e e d f o r w a r d  N e u r a l  N e t w o r k :  

The arohiteeture of  the neural network is 
;shown in Figure .4. The structure i.s the same as.a 
feed-forward ANN except for the learning algo- 
rithms. As it can be seen from Figure 4, neural 
network eo~sists of  three layerg, which are input, 
hidcten a-rid output layers. The input tayer with 

aJ .~" 

I I  

;0  
~t 

O x~,~ rll k ' -J '  "!.'~,q,*r ] ~nea,  n e u l ~ r "  

• e : ~eeentriefty .value of me¢hanism 
n~ : Numl~er ofneurons in: the inpt~t layer (~= i) 
n~ : Numbe~'.ofueurons in the hldde_n.layer ( j=l ,  .,-, 
tO) 
n~ : Number of neurons in the Output layer ~k=l, ...,. 
37) 

Fig, 4 A Feedfor~ard NN for kinematic analysis of 
modified mechanism 

one neuron, the hidden layer with i0 neurons 
a~ad the output layer with 3.7 ttcumus are em- 
p!~yed ~s a predictor of  ~he m~chanism. 

The network .architecture is defined by the 
basic pr0eessing etement8 and the way in which 
they are imer¢:o:nneeted. 

The :basic pr0ee.s~ing element of the e0nnee- 
rionizt architecture, is often a i l ed  .a u~uro.n by 
analogy with neuroph~siology. Many of the basic 
processing elements may be .considered to have 
three components; 

(~  A weighted sumea- 
(2) A linear dynamic single in~pnt.single .Output 

(S~SO~ 
(3) A non-tin.ear dy~mie  funetiorl 

These elements are considered in turn in the 
following section. The. weig.hted .~umer is describ- 
ed b y  

N M 
q~,.(t) :~a.e-y,.(t) =~b~u~(t.)=. +w, (3) 

giving a weighted :sum q~; in terms of the out- 
pu~ :of all elements y~., external inputs -u, a.nd 
corresponding weights a~ a~d b~ together with 

constants w~-. N of these ~veighted sumer elements 
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can be conveniently expressed in vector-matrix 

notation. 

Stacking N weighted sums ~ into a column 

vector p, the N outputs ye into a vector y and M 

inputs u~ into a vector u and the N constants w~ 

into a vector w, equation (3) may be rewritten in 

vector matrix form as : 

g,(t) = A y  (t) + B u  (t) + w (4) 

where the ij  ~ element of the N X N  matrix A 
is and the element of the N X M  matrix B is 

b~,. The constants w~ could be incorporated with 

the inputs u~, but it is useful to represent them 

explicitly. 

The linear dynamic SISO system has input cp 

and output x¢. In transfer function form, it is 

described by 

x~(s) = H ( s )  ~o,(s) (5) 

In the time domain ; above equation becomes : 

x,(t) =f[h(t- t ' )~,( t ' )dr" (6) 

where H(s )  and h( t )  form are a Laplace trans- 

form pair. 

The non-l inear  dynamic function g( . )  gives 

the element output y,  in terms of the transfer 

function output x~: 

y , = g ( x , )  (7) 

3.1 Learning algorithms 
The learning algorithm topology, which was 

employed for the neural network updating the 

weight can be described as follows; define the 

error function as (Canbulut et al., 2004) 

J = ~ ( y d , ( t )  - y , ( t )  ) 2 (8) 

where yd i ( t )  are the i TM desired outputs and 

y i ( t )  are the i TM outputs of  the network. This 

error function is to be minimized with respect 

to all the unknown parameters q). In the steepest 

descent approach the parameter vector ~ = [ 0 L ,  

8z, " ' ,  On] T is adjusted using the increment vec- 

tor [A01, Ate, ..., AOn] ~ defined along the nega- 

tive gradient direction of J 

a] (9) 

Although the one-hidden layer model is used in 

the present application, it is useful to derive the 

gradient of ] for the general case, and the result 

for the one-hidden- layer  model can readily be 

obtained as a special case. 
Starting from the output layer m of  the network 

and setting 0~ = W~', the application of  the chain 

rule gives rise to 

c7 _ ~l  Oy, (10) 
0 W,~ ~y, a W,7 

From equation (8) 

O J _  ( y a , _ y , )  = _  e~ (11) 
~y~ 

where ~ is called the error signal of the i th 

neuron in the TK~ th layer. From Equation (10) 

Oy, xr_ t  (12) 
0 WiY 

Thus, 

31 - 3 , ' x 7  ' ( t 3 )  
O W,7 

Next consider the ( m - -  I)th layer. Using the chain 

rule yields : 

~.~  n o m -  1 - ' ~  ~] x Oy~ × Ox~ '-~ ~z~ -~ 
OW.,.7 -~ ~-~ Oy, 3xT -~ Oz'p -1 × 3W,~ -~ (I4) 

Then 

and 

9~ .7  -1 

o~g(z) 
g'(z) = ~ 2 -  (17) 

and g(z i )  is the activation of  neuron i. 
By defining the error signal for the i th neuron 

of  the ( m - -  1) th layer as : 

~t O 

8?-'=g'(z';-') ~ at w~'~ (18) 
k = l  

Equation (8) can be rewritten as :  

aJ _ ~ ? _ ] x p _ 2  (19) 
0 W~- '  
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Sim.ilarly it can be .shown that 

aJ _ _  ~_~ (20~ 

where b~ -j is the bias i.nput to neuron .:i in layer 
m--r .  

By c:~rrying on this procedure, Eqt~ations (18) - 
(20) can be .used as a general algorithm for up- 
dating weights in o:ther layers. 

Equations (i8):-(20I indicate how the error 
Si~als propagate backwards from the output Ia- 
y~r af  the net~ork ~hrough tb.C hj.dd.~n: ta~er to the 
input [a.yer, hence the name '"BP'. The steepest- 
descent minimization of theerror funct[ondefined 
in Equation (8) produe~ the following inere, 
ments: for updating..@ : 

A W~: (t) ~w.d~'(tlXY'~(t) (21) 

where in .the output Ia)~er 

, ~  (t) =y~, (t) -y,~:t) :(~3) 

and in ~ther layers. 

: 2  

The¢onstants ~.~ ( 0 < ~ . < 1 )  and ~1~ ( 0 < ~ < 1 )  
represent the ~earning rates: for the weights and 
biases respeeti~eiy: In praefiee, a large value of 
the learning rate wo:~ald be preferable, because this 
would result in ~:pid Iearniag. Unfortunately, a 
large vaIue of the }earning rate Can .also }cad to 
oscillation or even .divergen.e~. To help. speed up 
learning bm ~ i d  undue., ose:ilM~ion~, :a momen- 
turn term is usu.ally included so that Equations 
(2I) and .(22) become 

v~here a~and a~ are momentum constants, which 
determine the effect of past changes of ~ (t) 
and Abp (~) oz the' current updating direction in 
the weight and the. b~as: space respeetb~ely. This 
effeetiveIy filters o:ut high frequency variations 
in the error surface. To summarize, the BP algo- 
rithm updates the weights and thresholds, of the. 

networks according tO 

w ~ t l  =w,~ ( t -  1) +A w#.(t.) (27) 

and 

b/~(t). = b~ ( t -  r9 +/xb~'(.t) (2~) 

where the increments AW~ (t) and Abe( t )  are: 
given in equations in (25) and (26). 

The neural network was trained and tested by 
using, five types, of  Iearning algorithms: The algo- 
rithms can be described in the following forms. 

3,1.I Onlfne-haekpropagation algorithm 
(Case 1) 

Online Backp.ropagation which updates the 
'weights after each .pattern is presented to the net- 
work. Back-propagation is the most commonly 
used training, algorithm for neural networks. The 
weights: are .updated as fOllOWS 

b 

P ,  
• • . - 

p i 
• . . . .  . , 

. .  - . b 

- , • . . . .  " . . ,  , 

• • . • , , , ,  , 

• • " - i .  • . " .  . .  • r 

~ "  ~ % ~ , ~ , s  ~ - ~ .  4 

t p . . . .  , 

Fig. fi(a) The actual trartsmiss[on ag~g!e variations 
uNng ~nl:ine BP Iearning algorithm 

° 

- z ,  . 

,h 

Fig. s (b) 

• a ~ J  

1 

. I  

The RM8Es using .online BP .learning 
algorithm 
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Aw;~(t) = - ~  ~gW.,~:(t) t - :~~¢~t - l i  (29) 

where r) is the. learning rate, and a is the mo- 
mentum constant. The actual results for "Oflline 
Baekpropagation Learning Algorithm" can be 
outlined in .F(g. 5(a)i. 

From Fig~ 3 and Fig., 5 (a), th~ deviations be- 
tween • desired and •actual res:ults. (RMS Error) 
using Online BP Learning Algorit.hra is shown 
:in Fig. 5.(h). 

3.L2 Batch backpropagation algorithm 
(Case 2): 

Bateh Backpropagati0n with weight update~ 
occurring, after each epoch. The: actual results for 
"Batch Backp.ropagati0n Learning Algorithm" 
can be outfined in Fig. 6 ~a). 

From Fig, 3 and Fig. 6(a)., the deviations be- 
tween desired :and actual results using B_ateh BP 
Learning Algorithm. is s~ovcn in Flg. 6 (b).. 

3,1.3 Delta-Bar-Delta algorithm (Case 3) 
DeIm-.Bar-Delta is a.n adaptive learning rate 

method in which every weig!lt has. its own learn- 
ing rate. The learning rates .are updated, hasexl on 
th¢ sign .of the gradient. ! f  the gradient does not 
chala.ge ~gns on successNe iterations then the step 
size. is increased Hnearly. If th~ gradient changes. 
signs; the learning rate is de.er,ased exponentially. 
tn some eases this method seems to learn much 
faste~ than non-adaptive methods,. Learning rates, 
7] (.t) are ,u~dated as follows: 

K . i f  ~ " ( . t -  Ill) ~ ' ( t ) : > 0  

A~ (t) = - :¢ , l  (~) ~f ~ : ( t -  l) ~ (t) < 0  (~o) 
O: e/se 

• -, ",:  ii iii iiiiii, iiiiiiiiiiiiii!!i!i!? I ~ 4, , i • I 

• , . , . . , . % .  , ~..  " , . ' i  ~ "=~..'-,:'. "..'...., 

Fig. 6~a) The actual tmn.smissio~ angle v~nations 
using .batch BP learning algorithm 

4,v,~ 

  ii!iii!iiii!!iii!!! 

lib 

Fig, 7(a) The actual transmission .angle variations 
U~ing delta-bat-delta learning aigorffhm 

' !  

1 

tt  

Fig, 6 (b) 

-" a t ¢  
11,  

T 
- "7'. 

The RMSEs u~-ing batch BP learning 
algorithm 

t. 
, !  

• J .3 $ 

,)q. 
.b '  

t'fct ¢" ~ .. 

~b ~ .  

- 4 

The RMSF~. u~ng delta-bar-delta learn- 
ing aIgorifl:tm 
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OE where d ( t ~ ) = ~  at time t arm ~- is the expo- 

nentlal average of past values of  d. 

~-(~) = ( 1 -  al ~(t:) +.a~-~t- !) (31) 

The actual resul.ts for "Dolt.a-Bar-Delta Learning 
Algorithm" can be outlined in Fig.. 7(a)÷ 

From Fig; 3 an:d Fig. 7~a), the deviations, be- 
tween desired and ,actual results using.. Deha- 
Bar-Delta Learning Algorithm is shown in Fig. 7 
(h) 

3+1,4 R a n d o m  b a e k p r o p a g a t i o n  a l g o r i t h m  

(C~se 4) 
Random Bacl~propagati.on Algorithm stands 

for "resilient propagation". "Ibis is an adaptive 
learning rate method where weight updates are 
based only on the :Sign o( the local g~.adients, not 

• . . , " ,  %.". 
.,~ ,::...::...: 

• ~'~ ,~.o*%. %% %. • ~ % +% Y% %, .  *% • 
I t% 1 ' . % ~ . .  '~.  , % *1 - 4. ~, ~-..::..:.,.,,,., 
. . , . - , : . . . . . ,  .. 

ram. s ta) 

-,,.,..:..::..,, .,, 
*% ,%%**°. , "p 

::f::/ ! ] , . t : - : : " "  ' i ~ . . . . .  ,~ 

The actual transmission angle variations 
using ra~do:m BP l.earn:ing algorithm 

lwt 

Fig, 8(5) The RMSE~ using random BP IeamJag 
algorithm 

their .magnitudes. Each weight, w~:~, has its own 
step :size or update value, Ai¢ which varie~ with 
time t according to : 

i f~E . i ~ ~E,t~ 

hz(t) = / ~.-.6o(t-l),  i f~ ( t -1 ) .~ (~) .<0~o  ~ 432) 

L~j ( t - t ) ,  etse 

~here 0<~-<1< :~  ÷. The weights are updated 
• according to : 

I 0 E .  --A~(t),  if ~ ( t )  >0 

A~,s( ')  = / + A ¢ ) f t ) ,  if O N ( t ) < 0  (33) 

[o else 

The actual .results for "Random Baekpropagation 
Learning Algorithm" can be outlined in Fig. 8 
(•a). 

From Fig. 3 and Fig. 8(a), the deviations 
between desired and actual results using lZan.dom 
BP Learning Algorithm is shown in. Fig. 8 (b). 

3,1.5 Quick propagation algorithm (Case 
Quick Propagation Algorithm is a training 

m~tho.:d ha~ o.n the foIIo~vh~g a~sumptioa'm. 

(I) g(W) for.eaela weight can be approximat- 
ed by.a parabola that opens • upward 

(2) The change in slope: of F(va) for this 
w~ight is not affected by all other weights that 
change a.t the .same time. 

The weigh~ update rule is • 

S(t) A ~ ( t - 1 ) - ~ S ( t )  (3g) 
Aw (~) =+S ( t -  l) - S ( t )  

aE 
where S(.t)=--~-(t). The .n.u.me~ator is the deri- 

vative' of the error with res.peet to the weight 
and [ S ( t - l ) - - S ( t ) J / A w ( t - i )  is a finite dif- 
ference approximation of the second derivative, 
TOgether these .approximate Newtorfs method 
for minimizing a one--dimensional function f ( x )  : 
A ~ = - - f '  (x)/ f"  (x}. To avoid ta.lting an inf'mite 
backward step, or a b:aekw:ard uphill step, a maxi- 
mum growth factor parameter ~ is introduced. 
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No weight change is allowed to be larger than ~r 
times the previous weight change, The actual 
results for "Quick Propagation Learning Algo- 
rithm" can be outlined in Fig. 9(a), 

From Fig. 31 and Fig. 9~a), the deviatiOnS be- 
tveeen desired and actual results using Quick Pro- 
pagation Learning Algorithm is shown in Fig. 9 

Ik -' 
O, 

Fig. 9~a.) The actual transmission an#e variations 
using quick propagation learning a!go.- 
rithm 

= 

~t 

Fig. 9(b) 

• 3 q  
? 4  

The R.MSEs using quick propagation 
learning ,algorithm 

4. Simulation Results: and Discussion 

Thg results obtained using NNs for a modified 
slider-crank mechanism h a ~  been described in 
this section, The general structure of  the: neural 
predictor is shown in Figure 4, Training of the 
• neural network proceeds .as fotlows. Firstly, neur- 
al network was trained hy using CASE i algo- 
rithm for I000000 iteration numbers. The neural 
network• was, trained by using all cases as describ- 
ed in scoffon 3.t. The structural and trailaing 
algorithm of the neural network is outliiaed in 
Table 2. 

TO verify the effectiveness o f  neural network, 
simulation results of modeling of a slider-crank 
mechanism are sh0wn in.. Figure 5 ( a ) ~ 9  (bl for 
all cases. F[gure 5~a.) represents variations of 
transmission angle when eecentnc.~ty and crank 
rol;afion angle.s changed. The RMSE results are 
given, in Figure 5 (b) for Case 1. Figure 6 (a) and 
Figure 6(b) show the transmission angle track- 
ing for Case 2 when eccentricity and crank rota- 
tion angles of mechanism changed. The results 

of transmission angle of modified slider-crank 
mechanism for Case 3 are pIotted in Figure 7 (.a). 
RMSEs variation: for this ease is .given in Figure 
7 (b). Figt~re 8(.a.~ shows the output of  the neural 
tietwo~k predictor for: ease of 4. The results, of  
this case are rather worse than the oases of 1., 2, 3 
a.nd 5. RMSEs for ~he ease of 4 are depicted in 
Figure: 8{b). Figure 9{a) •indicates the results ~of 
Case S. As can. be depicted from figure, the case 
of Quick Propagation learning algorithm gives 
the best results of.all eases, RMSEs for the case of  
5 are given in Figure9 (b). 

Most o.f neural network models used for pre- 
diction and modeling are feed-forward networks. 

Table 2 Trainhag parameters, and RMSE of the. network .for the different Ieaming algorithms 

NN type 

Ca~e 1 

Case 2 

Ca~e 3 

C~se 4 

Case 5 

i ~0 37 9.05 o, o0~ 

J .lo 37 0.05 0~00i 

I l0 37 0.05 0,001 

1 10 37 0.05 0~001 

1 10 37: 0.05 0.00! 

N RMSE.  Learning. Algorithm 

. I000000. 0;0i~7 Onli~e,Baekpropagation 

i000000 0~0 I5.65 Baleh Baekpmpagation 

1000000 0,01079 Delt a~-Bar-D.elta 

1000000 0,24845 Random Backpropagadon 

1000000 0.004388 Quick Propagation 
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Since fee&forward nets can only represent me- 

moryless transformations, one needs to explicitly 

feed all the past inputs and outputs of  the mech- 

anisms. 

5. Conclusions 

The prediction of  a proposed and modified 

sl ider-crank mechanism has been discussed in 

this paper. Neural networks have been employed 

to find exact transmission angle parameters of 

the sl ider-crank mechanism. The case of  5, Quick 

Propagation neural network predictor has given 

the best performance rather than the cases of  1, 2, 

3 and 4. 

Based on the simulation results, it is observed 

that the proposed NN is promising in the follow- 

ing aspects. First, the QP learning algorithm is 

very efficient. After the task is repeated only a few 

times, the neural network is well trained so that 

the desired tracking performance can be achieved. 

Second, the network structure is simple which is 

suitable for real time prediction purpose. Third, 

in comparison with the res~hs obtained in all 
cases, this prediction technique does not require 

knowledge of the bounds of  uncertainties of the 

mechanism modeI. Thus, it can be implemented to 

predict a more general class of dynamic system 

whose model is unknown. 
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